Deepwater Oil & Gas Facilities

6th China-US OGIF, New Orleans, USA

June 28 – 29, 2005
2005年6月28日至29日

Bill Soester
V.P. Engineering
J. Ray McDermott
Definitions of Deepwater

- Relative, change as technologies progress

- 10 Years ago
 - Deepwater: >300 meters

- Today
 - Deepwater: > 500 meters
 - Ultra-deepwater: > 1,500 meters

 - Production – dry tree: 1,710 m, Devils Tower Spar, GOM
 - Production – wet tree: 1,920 m, NaKika Semi, GOM
 - Drilling: 3,051 Meters, Toledo #1, GOM
Advances in Deep Water Production Capability

- 1950: Very shallow water depth
- 1960: Lightly increasing water depth
- 1970: Moderate increase in water depth
- 1980: Slight increase in water depth
- 1990: Significant increase in water depth
- 2000: Major increase in water depth
- 2010: Dramatic increase in water depth

Water Depth in Meters

- 0
- 200
- 400
- 600
- 800
- 1000
- 1200
- 1400
- 1600
- 1800
- 2000
- 2200
- 2400
- 2600
- 2800

Years:
- 1950
- 1960
- 1970
- 1980
- 1990
- 2000
- 2010

Water depth increased significantly from 2000 to 2010.
Deepwater Development Solutions

Solutions for Different Water Depths

- Conv. Fixed Jacket
- Compliant Tower
- TLP
- Semi-sub
- Spar
- FPSO

Water Depth (meter)
Deepwater Production Facilities – for Dry Trees

Compliant Tower Tension Leg Platform (TLP) Spar
Deepwater Production Facilities – for Wet Trees

Floating Production, Storage and Offloading (FPSO)

Semi-submersible (Semi)
Inputs to the FPSO vs. non-FPSO Decision

- Access to Pipeline Grid or shore
- Oil Export Site – Political or Economical factors
- Life of Field
- Dry Tree vs. Wet Tree
- Reservoir Development Plan
- Tolerance to Production Down Time
Factors in Choosing between Non-FPSO Solutions (Spars, Towers, TLPs, Semis)

- Water Depth
- Environment Conditions
- Initial vs. future Topside Weight
- No. of Risers
- Drilling Program
- Access to Wells: Wet vs. Dry
- Installation Capabilities
- Initial vs. Total Life Cycle Cost
Hybrid Solution – Obtaining the Benefits of both Types of Facilities

- TLP or Spar
 - Drilling
 - Dry Trees
 - Easy Intervention

and

- FPSO
 - Processing
 - Storage
 - Offloading
Compliant Tower

- **Design:**
 - Tower – Slender jacket
 - Compliant – designed to avoid resonance with large waves

- **Application** – most cost effective in 300 to 670 m.

- **Advantages:**
 - Dry tree
 - Robust relative to payload changes
 - Less steel tonnages required (in the above depth range)
 - Simpler, conventional fabrication
 - Installation flexibility

- **Disadvantages:**
 - Limited water depth range
Compliant Tower – Tallest Man Made Structure
Semi-submersible

- **Design** – vertical columns supporting topsides and supported on large pontoons, anchored to the seafloor with spread mooring lines.

- **Applicable W.D.** – 80 m to 2,500 m

- **Advantages:**
 - Large number of flexible risers possible
 - Quayside Topsides-hull integration

- **Disadvantages:**
 - Wet tree only
 - High maintenance cost
 - Fatigue motion – not friendly to risers
 - Sensitive to deck payload
Tension Leg Platform (TLP)

- **Design** — Similar to a semi-submersible but anchored to the seafloor with vertical tendons.

- **Application** - more cost effective from 600 m to 1,200 m

- **Advantages:**
 - Dry tree
 - Friendly to SCR
 - Quayside topsides-hull integration
 - Low maintenance cost

- **Disadvantages:**
 - Sensitive to deck payload change
 - Active hull system
 - Not friendly to offset drilling
 - Tendon fatigue
Spar

- **Design** – Large vertical column supporting topsides and connected below to the ballast tank with a truss section. A spread mooring system is used for station-keeping.

- **Application** – 550 m to 3,000 m

- **Advantages:**
 - Superior stability
 - Dry trees
 - Friendly to SCR
 - Accommodates payload changes
 - Friendly to offset drilling
 - Passive hull system
 - Low maintenance cost

- **Disadvantages:**
 - Topside lift at installation site
 - Large derrick barge required for topsides installation
Deepwater Technology Suppliers

- Compliant Tower
 - J. Ray McDermott
 - Wood Group

- TLP
 - J. Ray McDermott (JV with Keppel)
 - MODEC
 - SBM
 - Aker-Kvaerner

- Spar
 - J. Ray McDermott
 - Technip

- FPSO
 - Various

- Semi-submersible
 - Various
The Industry’s Deepwater Experience

- Compliant Tower – 3 each
- Spar – 13
- TLP – 21
- Semi (production type) – 43
- FPSO – 119
The Future

- Improved design tools – providing lower weight and less expensive hulls
- Improved hull shapes – greater motion stability and payload capacity
- Improved deepwater riser technology
- Synthetic mooring lines for ultra deep water
Conclusion

- China is proceeding with deepwater exploration
- Deepwater solutions are available for China’s O&G development plans, from 300 meters to 3000 meters
- Cooperation between China and the deepwater technology contractors makes good business sense

Thank You